Rational Dyck Paths in the Non Relatively Prime Case

نویسندگان

  • Evgeny Gorsky
  • Mikhail Mazin
  • Monica Vazirani
چکیده

We study the relationship between rational slope Dyck paths and invariant subsets of Z, extending the work of the first two authors in the relatively prime case. We also find a bijection between (dn, dm)–Dyck paths and d-tuples of (n,m)-Dyck paths endowed with certain gluing data. These are the first steps towards understanding the relationship between rational slope Catalan combinatorics and the geometry of affine Springer fibers and knot invariants in the non relatively prime case.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Discrete Initial- and Boundary-Value Problems

Multivariate linear recurrences appear in such diverse elds of mathematics as combinatorics, probability theory, and numerical resolution of partial diierential equations. Whereas in the univariate case the solution of a constant-coeecient recurrence always has a rational generating function, this is no longer true in the multivariate case where this generating function can be non-rational, non...

متن کامل

Rational Associahedra and Noncrossing Partitions

Each positive rational number x > 0 can be written uniquely as x = a/(b− a) for coprime positive integers 0 < a < b. We will identify x with the pair (a, b). In this paper we define for each positive rational x > 0 a simplicial complex Ass(x) = Ass(a, b) called the rational associahedron. It is a pure simplicial complex of dimension a − 2, and its maximal faces are counted by the rational Catal...

متن کامل

Lattice paths below a line of rational slope

Abstract We analyse some enumerative and asymptotic properties of lattice paths below a line of rational slope. We illustrate our approach with Dyck paths under a line of slope 2/5. This answers Knuth’s problem #4 from his “Flajolet lecture” during the conference “Analysis of Algorithms” (AofA’2014) in Paris in June 2014. Our approach extends the work of Banderier and Flajolet for asymptotics a...

متن کامل

Combinatorics of the zeta map on rational Dyck paths

An pa, bq-Dyck path P is a lattice path from p0, 0q to pb, aq that stays above the line y “ a b x. The zeta map is a curious rule that maps the set of pa, bq-Dyck paths into itself; it is conjecturally bijective, and we provide progress towards proof of bijectivity in this paper, by showing that knowing zeta of P and zeta of P conjugate is enough to recover P . Our method begets an area-preserv...

متن کامل

The Dyck pattern poset

We introduce the notion of pattern in the context of lattice paths, and investigate it in the specific case of Dyck paths. Similarly to the case of permutations, the pattern-containment relation defines a poset structure on the set of all Dyck paths, which we call the Dyck pattern poset. Given a Dyck path P , we determine a formula for the number of Dyck paths covered by P , as well as for the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2017